IDEAL THEORY AND PRUFER DOMAINS

FELIX GOTTI

LOCALIZATION

Contraction and Extension of Ideals. TODO...

Localization of Rings. Let R be a commutative ring with identity. A multiplicative
subset of R is a submonoid of (R \ {0}, -), that is, a subset of R\ {0} that contains 1
and is closed under multiplication. Let S be a multiplicative subset of R. One can
define the following relation on R x S: (rq,81) ~ (rq, s2) for (r1,s1), (r2,82) € R x S
provided that (r1sy — res1)s = 0 for some s € S. It is not hard to check that ~ is
indeed an equivalence relation on R x S. We let S™'R denote the set of equivalence
classes of ~ and, for € R and s € S, we let r/s denote the equivalence class of (r,s).
Motivated by the standard addition and multiplication of rational numbers, we can
now define for ry/s; and ro/sy in ST R the following operations:

1 T 1S9 + 7981 T T 172
—+—=—=———— and — —:i=—

S1 82. 5152 S1 82 8182'

It is routine to verify that both operations are well defined and that (S™'R, +,-) is a
commutative ring with identity 1/1.

Proposition 1. (S™'R, +,-) is a commutative ring with identity.

The ring S7!R is called the localization of R at S. We can easily see that the
map 7: R — ST!R defined by m(r) = r/1 satisfies the properties in the following
proposition.

Proposition 2. Let R be a commutative ring with identity, and let S be a multiplicative
subset of R. Then the following statements hold.

(1) The map m: R — S™'R is a ring homomorphism satisfying that 7(s) is a unit
in STIR for every s € S. In addition, T is injective if and only if S contains
no zero-divisors of R.

(2) If p: R — T is a ring homomorphism such that ¢(s) is a unit in T for every
s € S, then there exists a unique ring homomorphism 6: S R — T such that
p=~0om.
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Proof. (1) One can readily see that 7 is a ring homomorphism. For every s € S, it
is clear that 1/s € ST'R and, therefore, 7(s) = s/1 is a unit in ST'R. If s € S is a
zero-divisor in R, then taking » € R\ {0} with sr = 0, we can see that m(r) = 0 and
so 7 is not injective. Conversely, if 7(r) = 0 for some r € R\ {0}, then r/1 = 0/1 and
so there is an s € S such that sr = 0.

(2) For ¢ as in (2), define : ST'R — T by 0(r/s) = ¢(r)p(s)~!. Since ¢(s) € T*
for every s € S, the element ¢(r)p(s)~! belongs to T', and it is easy to check that 6
is a well-defined ring homomorphism. Since 6(7(r)) = 6(r/1) = ¢(r), the equality
0 o™ = ¢ holds. Finally, for any ring homomorphism ¢': S™'R — T with ¢ = §' o 7,
we see that 0'(r/s) = 0'(r/1)0'(1/s) = 0'(n(r))0'(x(s)) ™t = o(r)p(s) ! = O(r/s) for all
r/s € ST'R. Hence §' = 0, and the uniqueness follows. O

If R is an integral domain, then the localization of R at the multiplicative subset
(R\ {0}, ) is the quotient field qf(R) of R. The following two examples of localizations
often show up in commutative ring theory.

Example 3. Let R be a commutative ring with identity, and let P be a prime ideal
of R. Since R is prime, S := R\ P is a multiplicative subset of R. The ring S™'R is
called the localization of R at P and is denoted by Rp.

(1) For instance, if p € P, then
Ly = {m/n :m,n € Z and p’(n};
observe that the units of Z,) are the elements m/n such that m,n € Z and

p{mn.

(2) Set R = Clz,y] and P = (x,y). Then P is a prime ideal, and the localization
Rp of R at P consists of all rational expressions f/g, where f,g € Rand g ¢ P,
that is, g(0,0) # 0. The units of Rp are the rational expressions f/g satisfying

f(0,0)g(0,0) # 0.
In general, the units of Rp have the form r/s with r, s € R such that rs ¢ P.

Example 4. Let R be a commutative ring with identity, and let f be an element of R
such that f* # 0 for any n € Ny. For S := {f" : n € Ny}, the ring S™'R = R[1/f]
is often denoted by R;. It is not hard to argue that R; is isomorphic to the ring
R[z]/(xf—1). For instance, Z[z|, = Z[z, 1/z], which is the ring of Laurent polynomials
in one variable over Z.

An integral domain is the intersection of all its localizations at prime ideals.

Proposition 5. If R is an integral domain, then R = (\p Rp = (,; Rm, where the
first intersection runs over all prime ideals of R and the second intersection runs over
all mazimal ideals of R.
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Proof. It is clear that R C (\p Rp C (), Rm. To show that (,, Ry C R, take
a € (), Rm and suppose, by way of contradiction, that a ¢ R. The set I, :== {r € R :
ra € R} is an ideal of R, which is a proper ideal because a ¢ R. Let M be a maximal
ideal of R containing I,. Then a € Ry, and we can take r € R and s € R\ M such
that a = r/s. As sa =71 € R, we see that s € I, C M, which is a contradiction. O

Localization and Ideals. For an ideal I of R, the ideal ST!Rm(I) of ST'R is called
the extension of I by m and is denoted by S™1I. Observe that every element of S~
can be written as a/s for some a € [ and s € S.

Proposition 6. Let R be a commutative ring with identity, and let S be a multiplicative
subset of R. Then the following statements hold.
(1) For any ideal J of S™'R the equality S™'7~1(J) = J holds. In particular, every
ideal of STR is the extension of an ideal in R.
(2) For an ideal I of R, the equality S~'I = S™'R holds if and only if I NS # (.
(3) The assignment I — S™'I induces a bijection between the set of prime ideals
of R disjoint from S and the set of prime ideals of ST'R.

Proof. (1) Tt suffices to show that J is contained in the ideal J' := S~'z~!(J). Take
r/s€ J. Asr/1 = (s/1)(r/s) € J, it follows that r € 7=(J), and so /1 € S~ x~1(J).
Since J' is an ideal of ST'R, we see that r/s = (1/s)(r/1) € J'. Hence J' = J. The
second statement is an immediate consequence of the first one.

(2)If S7'T = S7'R, then a/s = 1/1 for some a € I and s € S. So we can take s’ € S
such that (a — s)s’ = 0. This means that ss’ = as’ € I, whence I NS = (). Conversely,
assume that 1N S # () and take a € INS. Then for all r/s € ST'R, we see that ra € T
while sa € S, which implies that r/s = (ra)/(sa) € S~'I. Thus, S™'I = S7'R.

(3) Let .# be the set of prime ideals in R that are disjoint from S, and let ¢ be the
set of prime ideals in S™'R. Let e: & — # and ¢: # — .# be the maps given by
the assignments I — S~!I and J ~ 7 1(J), respectively. Since homomorphic inverse
images of prime ideals are prime ideals, ¢ is well defined. To check that e is also well
defined, take P € .# and let us verify that S™'P is a prime ideal. Take 7,79 € R
and s1,s3 € S such that (ry/s1)(ry/ss) € ST'P. Then there are elements a € P and
s, s € S such that (11728 —as;82)s’ = 0, which implies that ryryss” € P. As P is prime
and disjoint from S, we obtain that either r; € P or ro € P, from which we deduce
that either r;/s; € S™'P or ry/sy € ST'P. Hence S™!'P is a prime ideal, and so the
map e is well defined. Part (1) guarantees that e o ¢ is the identity of #. Proving
that c o e is the identity of .# amounts to arguing that c(e(P)) C P for every P € .Z.
To do so, take az/s3 € e(P) = S™'P for a3 € P and s3 € S. If r € 7 '(az/s3), then
r/1 = az/s3 and there is an s” € S with (rs3 — a3)s” = 0. This implies that rs3 € P,
from which we deduce that r € P. Hence c(e(P)) C P, as desired. Thus, co e is the
identity of ., which completes the proof. 0
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The property of being Noetherian is preserved under localization.

Proposition 7. Let R be a Noetherian domain, and let S be a multiplicative subset
of R. Then S™'R is also Noetherian.

Proof. By Proposition 6, any ideal of S™!'R has the form S—'I for some ideal I of R.
Since R is Noetherian, I = Ra; + --- + Ra, for some ay,...,a, € R. Then for each
a/s € ST witha € I and s € S, we can write a = " | r;a; for some 7y, ...,7r, € R to
obtain the equality a/s = > (r:/s)(a;/1). Thus, S7I is the ideal of S~!'R generated
by ai/1,...,a,/1. Hence ST'R is a Noetherian ring. O

In addition, localization preserves the most important ideal operations, as we will
see in the following proposition.

Proposition 8. Let R be a commutative ring with identity, and let S be a multiplicative
subset of R. For ideals I and J of R, the following statements hold.

(1) ST+ J) =S+ 8571,
2) STHINJ)=S"1tInsS 1.

(2) S
(3) STHIJ) = (STH)(S™T).
(4) ST'R/ S~ S~YR/I).

Proof. Exercise. 0

Localization of Modules. We can localize modules in the same way we have localized
rings. Let R be a commutative ring with identity with a multiplicative subset S, and
let M be an R-module. It is easy to verify that the relation on M x S defined by
(mq,s1) ~ (Mg, s9) if there is an s € S such that (m;sy — mas;)s = 0 is an equivalence
relation, and one denotes the class of (m,s) by m/s and the set of all equivalence
classes by S71M. It is routine to verify that the operations

mi Mgy Somy + S1Ma romy My

—F —=—- and -.—:=—

S1 S9 5152 S S1 S§51
where my /sy, ma/sy € ST'M and r/s € STR, are well defined and turn S~!'M into
an S~!R-module, which is called the localization M at S. In particular, S™'M is an
R-module. As Exercise 7 indicates, localization commutes with (direct) sums, intersec-
tions, and quotients of modules. The map 7: M — S~'M defined by m +— m/1 is an
R-module homomorphism and has the universal property described in Proposition 9(2).

Proposition 9. Let R be a commutative ring with identity, let S be a multiplicative
subset of R, and let M be an R-module. Then the following statements hold.

(1) The map 7: M — S™'M defined by m — m/1 is an R-module homomorphism
and kerm ={m € M : sm =0 for some s € S}.
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(2) If M" is an R-module such that, for each s € S, left multiplication by s yields a
bijection on M’ and, in addition, o: M — M’ is an R-module homomorphism,
then there is a unique R-module homomorphism 0: S™*M — M’ such that
p=~0or.

(3) Any R-module homomorphism v: M — M’ induces an S~*R-module homo-
morphism S™'M — ST'M’ via the assignment m/s — 1(m)/s.
Proof. Exercise. O

The localization of a Noetherian R-module is Noetherian.

Proposition 10. Let R be a commutative ring with identity, and let S be a multi-
plicative subset of R. If M is a Noetherian R-module, then S™*M is also a Noetherian
S™IR-module.

Proof. See the proof of Proposition 7. U

EXERCISES

Exercise 1. Let R be a commutative ring with identity, and let S be a multiplicative
subset of R. The set S := {r € R : m(r) is a unit of S"'R} is called the saturation
of S. Prove the following statements.

(1) S={reR:rtesS for somet € R}.
(2) S is a multiplicative subset of R satisfying S C S = S.
(3) SR~ STIR.

Exercise 2. Let R be a commutative ring with identity, and let I and J be ideals of R.
Prove that I = J if and only if IRp = JRp for every maximal ideal P of R.

Exercise 3. Let R be an integral domain, and let S be a multiplicative subset of R.
Prove the following statements.

(1) If R is a UFD, then S™'R is a UFD.
(2) Suppose that S is saturated and R is atomic (i.e, every nonzero nonunit of R
factors into irreducibles). If ST'R is a UFD, then R is a UFD.
Exercise 4. Prove Proposition 8.

Exercise 5. Prove Proposition 9.

Exercise 6. Let R be a commutative ring, and let S be a multiplicative subset of R.
Let M be an R-module. Let m: M — S™*M be the natural map. Prove the following
statements.

(1) For each R-submodule N of M, the set ST'N :={n/s:n € N and s € S} is
an ST'R-submodule of ST1M.
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(2) If L is an ST R-submodule of S™*M, then 7='(L) is an R-submodule of M.

(3) If N is an R-submodule of M, then N C 7= '(S™'N). Also, if N = 7~ '(L)
for an ST'R-submodule L of STYM, then L = S™'N. In particular, every
STIR-submodule of S™*M has the form S™IN for an R-submodule N of M.

(4) Deduce that there is a bijection between the set of S~ R-submodules of S~ M

and the set of R-submodules N of M satisfying the condition: if sm € N for
some s € S and m € M, then m € N.

Exercise 7. Let R be a commutative ring with identity, let S be a multiplicative subset
of R, and let M be an R-module. For any submodules My and My of M, prove the
following statements.

(1) S™H My + My) = S™*My + S~ Ms.
(2) S™HM, & My) = ST My @ S Ms.
(3) STHM; N My) = STEMy N S™EMs.
(4) S7'M /) ST'My = STH(M/My).
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